• 最近访问:
发表于 2024-11-06 06:16:40 股吧网页版
田大伟:我眼中的A股量化20年(下)
来源:中国证券报

  目前我们的量化系统定期跟踪1000多个因子,逐日跟踪500多个因子,用于构造超额收益策略的基准有30多个。在我们的系统中,每个阿尔法因子和每个基准都会组合产生一个超额收益策略。换句话说,每个基准都有上百个超额收益策略每日计算和跟踪。

  因为每家量化投资机构因子入库的标准不同。有些机器挖出的因子我们是不作为阿尔法因子看待的,效果不好的因子我们也不会跟踪。所以相对于因子的数量,我更建议关注因子的质量和评价体系,例如如何将一个差因子一步一步研发成好因子,并把这个过程流程化,用于其他因子研发。

  为了维护产品超额收益的稳定性,也为了应对产品规模的增长,会根据实际情况选择不同的策略进行交易。策略多了,交易的股票也就多了。所以量化产品调仓时通常都会同时买卖上百只股票,这时就需要算法交易来帮助我们了。

  随着量化产品规模的增加,算法交易的重要性更加明显。在算法交易和嵌入算法交易的交易系统的加持下,量化投资才能释放出更大的能力,这也是现阶段量化投资的一个重要特征。

  而且,除了精准和节约,算法交易还可以进一步利用“逐笔成交数据”来进一步挖掘因子。我们普通投资者每天接触的,大多是日频数据,也就是每天的情况。但下单的数据是逐笔委托数据,但单子可能会被不同的对手盘单子吃掉,每次撮合成交的数据就是逐笔成交数据。这种数据交易所也是最近几年才完整提供的,称之为L2数据。

  L2数据可以说包含了大量详实的量价信息。如果市场上5000多只股票每天的逐笔成交和逐笔委托等L2数据都获得并存放成CSV文件,那么每天有几十G的量,这些数据是量化投资寻找阿尔法因子的宝库。

  有了L2数据,我们可以构建每天特定时间段的因子,例如收盘前30分钟的因子,也可以从L2数据中筛选出“大额”资金成交或者委托的信息,或者是主动买入、卖出等信息等,这样构建的因子信息是非常丰富的。

  算法交易、机器学习,感觉现在的量化投资方法越来越复杂,财务数据之外,量化方法还会使用很多其他数据。数据多但与股票涨跌无关也是无用的,方法越复杂也越难以有效把控。

  财务数据、事件数据、一致预期数据、简单的日频量价数据都是量化研究的重点,机器学习等方法我们也在不断学习,融入到整个量化体系当中,以提高我们因子库的质量,提高策略业绩和产品业绩的稳定性。量化投资就是团队成员彼此分工构建和迭代生产策略的流水线

  未来的量化投资方法已经在孕育中了,只是目前还没有特别好的成果。例如强化学习方法就像在虚拟的市场环境中进行“交易”,根据交易结果的好坏得到“奖励”或者“惩罚”来修正交易过程,直接给出“最优”的买卖信号。那时可能就步入了人工智能和金融工业化阶段。

  总体而言,股票市场是个复杂市场,量化投资还很年轻,主动量化产品的总规模和单个产品规模都相对较小,量化产品的业绩波动也很大,需要更长时间的检验。

郑重声明:用户在财富号/股吧/博客等社区发表的所有信息(包括但不限于文字、视频、音频、数据及图表)仅代表个人观点,与本网站立场无关,不对您构成任何投资建议,据此操作风险自担。请勿相信代客理财、免费荐股和炒股培训等宣传内容,远离非法证券活动。请勿添加发言用户的手机号码、公众号、微博、微信及QQ等信息,谨防上当受骗!
作者:您目前是匿名发表   登录 | 5秒注册 作者:,欢迎留言 退出发表新主题
郑重声明:用户在社区发表的所有资料、言论等仅代表个人观点,与本网站立场无关,不对您构成任何投资建议。用户应基于自己的独立判断,自行决定证券投资并承担相应风险。《东方财富社区管理规定》

扫一扫下载APP

扫一扫下载APP
信息网络传播视听节目许可证:0908328号 经营证券期货业务许可证编号:913101046312860336 违法和不良信息举报:021-34289898 举报邮箱:jubao@eastmoney.com
沪ICP证:沪B2-20070217 网站备案号:沪ICP备05006054号-11 沪公网安备 31010402000120号 版权所有:东方财富网 意见与建议:021-54509966/952500